

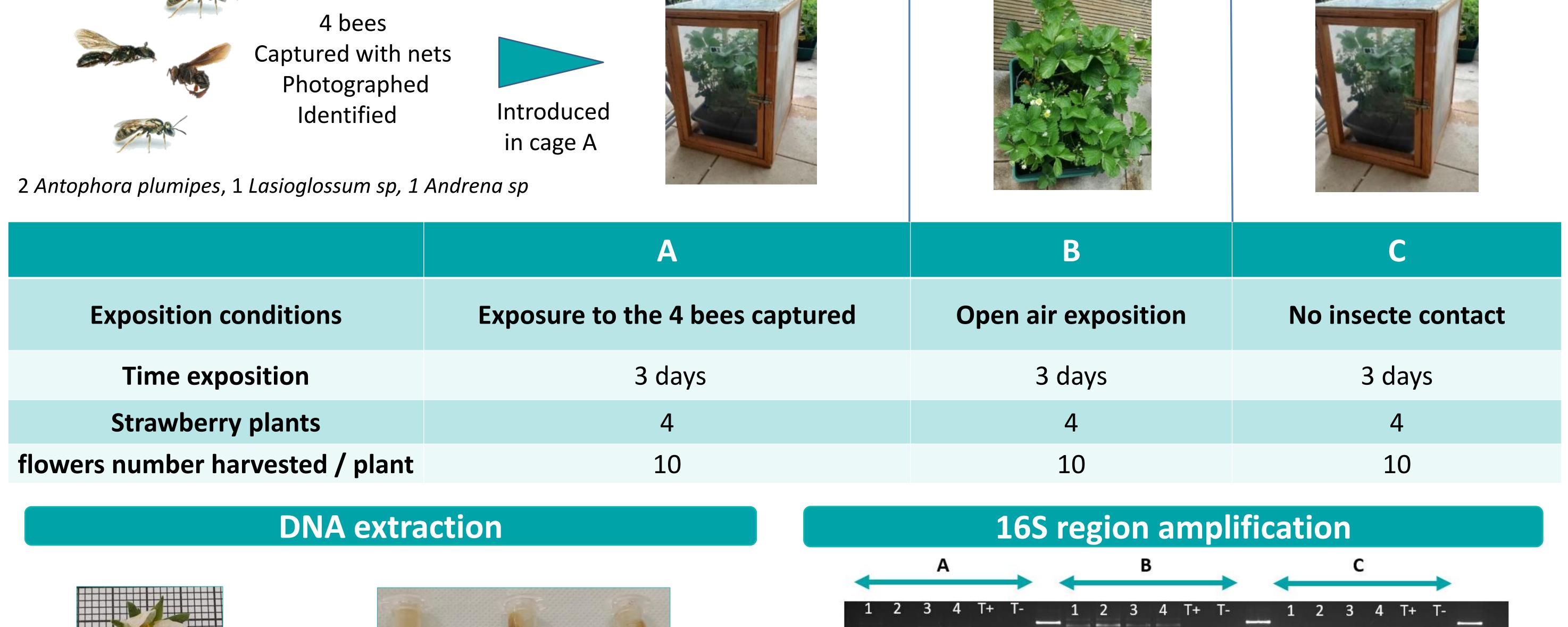
Corresponding authors : magalie.pichon@inrae.fr kamila.tabet@inrae.fr

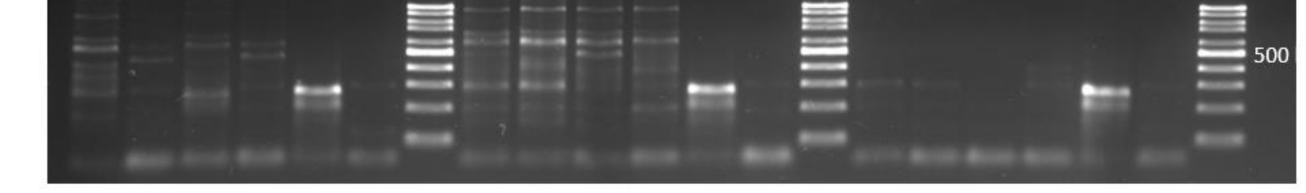
Identification of wild and domestic bees by non-destructive molecular methods

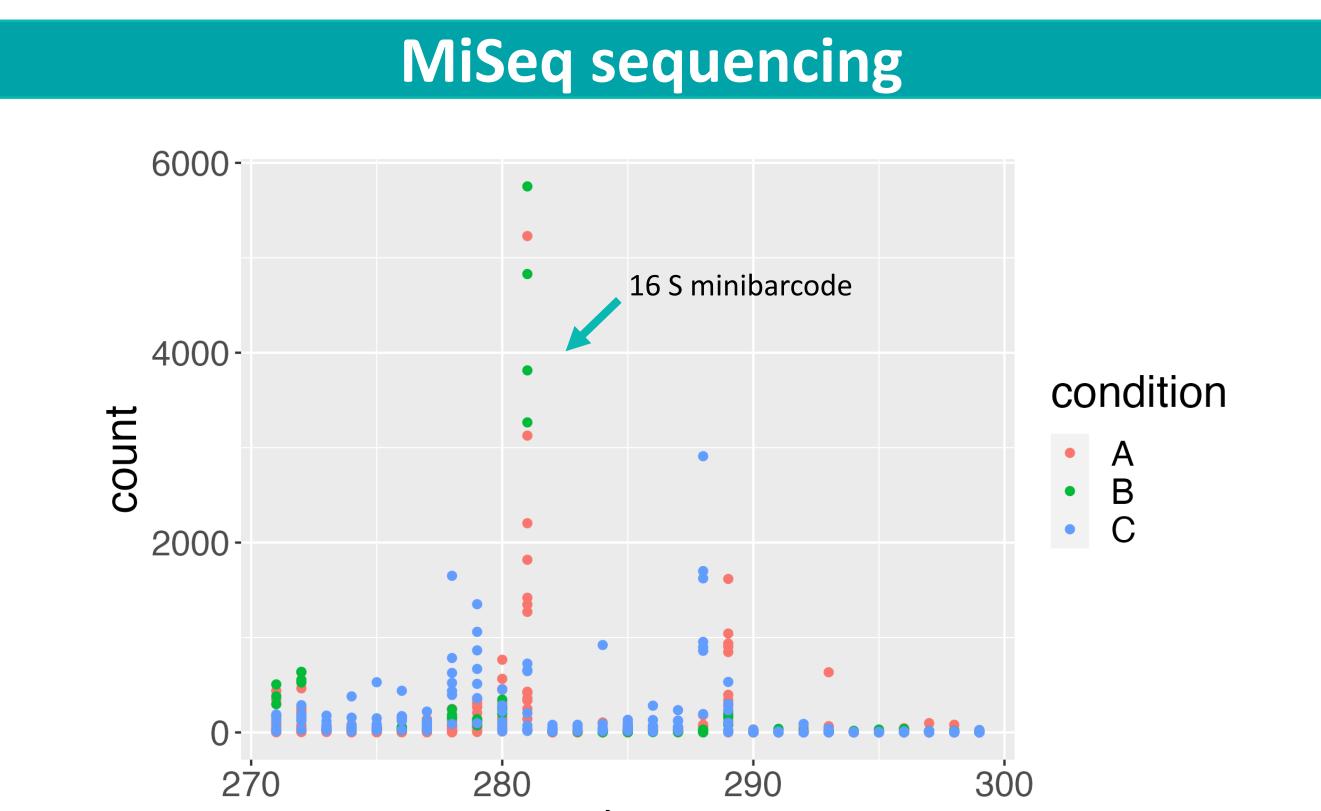
<u>Magalie Pichon</u>¹; Mélodie Ollivier²; Elisa Simon³; Emmanuelle Labarthe³; Alain Vignal³; Christophe Klopp⁴; Annie Ouin²; Kamila Canale Tabet³

- 1 : UMR Dynafor, INRAE, 31326, Castanet-Tolosan, France
- 2 : INP-ENSAT, Avenue de l'Agrobiopole BP 32607 Auzeville-Tolosane 31326 CASTANET-TOLOSAN Cedex
- 3 : GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
- 4: MIAT, INRAE, 31326, Castanet-Tolosan, France

There are more than 20,000 species of wild bees in the world and 967 in France playing a crucial function in the pollination of wild and cultivated plants. **Bees identification is a fundamental** step carried out with the help of identification keys or by molecular techniques such as barcoding and metabarcoding. **Non-lethal identification of pollinators has become a major issue**. In this project, we test a **DNA extraction protocol from traces** (hairs, excretions, etc.) left by bees on foraged flowers. Strawberry flowers were exposed for 3 days in natural conditions or in insect-proof boxes after manual introduction of wild bees. The use of degenerate oligonucleotides of a **16S mini barcode** (200-250bps) allowed us to **obtain fragments which have been sequenced.**


Environmental samples





Strawberry flowers were incubated in lysis buffer for 3 hours at 56°C and DNA extraction from insect traces was performed with the Qiagen DNeasy Blood & Tissue Kit (Ref. 69504).

PCR were performed with 16S primers modified from Clarke et al., 2014. Four individual flowers (1-4), were tested for each of the three conditions (A-C). DNA extracted from *Antophora plumipes* leg was used as positive control (T+)

Sequences analysis

Arthropods

	Match number	•
Seladonia	120	
Lasioglossum	109	
Apis	23	
Andrena	17	Daaa
Bombus	13	Bees
Nomada	5	
Eucera	2	
Halictus	2	
Sphecodes	1	
		•
Drosophila	22	1
Philantus	4	Othora
Lanthanomeli	4	Others
Holopyga sp	1	↓

Pathogens

	Match number
Aureobasidium pullulans	51
Zychaea mexicana	91
Corynebacterium striatum	112
Craterium leucocephalum	15
Cryptococcus neoformans	632

Plants

	Match number
Geum urbanum	7
Fragaria vesca	100
Fragaria x ananassa	447
Comarum palustre	157
Quercus robur	11
Potentilla anserina	11

bp Length distribution of Illumina sequences merged with Flash (Magoc and L. Salzberg; 2011)

References :

Clarke LJ, Soubrier J, Weyrich LS, Cooper A. Environmental metabarcodes for insects: in sillico PCR reveals potential for taxonomic bias. Mol Ecol Resour. 2014 Nov;14(6):1160-70. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 1;27(21):2957-63.

Blast results of merged sequenced for one flower from condition A.

Mammalian sequences mainly *Homo sapiens* and *Oryctolagus cuniculus*, were removed. Analysis of others flowers is underway.

Conclusions/Perspectives

- In a context of wild pollinator decline, it is challenging to develop non-destructive protocols to study plant pollinator interactions.
- > Wild flower eDNA is a powerful tool to obtain information on pollinator communities.
- > Our preliminary results using 16S barcode allow detecting PCR products from strawberry flowers DNA.
- Future experiments should be performed to complete these data , such as testing others families of plant with different floral morphology , adding short or long tongue bee families in insect-proof tents etc...