

Observation de la Terre par imagerie optique : de la mesure physique à l'indicateur écologique (part II)

Jean-Baptiste Féret UMR TETIS, INRAE — <u>jb.feret@teledetection.fr</u>

Apports, intérêts, limites de la télédétection pour mieux connaître la biodiversité Atelier du métaprogramme BIOSEFAIR, 14 novembre 2023

- Introduction
- Explore spatial, temporal and spectral dimensions from space
- A quick dive into the spectral space
- Current missions and forthcoming opportunities
- Earth observation and biodiversity : one approach among many
- Conclusions and perspectives

What is needed to assess biodiversity metrics from space?

 \rightarrow Information related to composition, functions, structure...

- species occurrence & species / species community distribution
- Vegetation traits related to phenology, photosynthesis, LMA, nitrogen, water content...

- What do we measure from space ?
 - Signal reflected, emitted, backscattered from Earth surface
 - ... combining multiple factors intrinsic and extrinsic to surfaces / objects of interest
- How to translate satellite acquisition into ecologically meaningful information ?
 - [physical & statistical] models to assess continuous vegetation biophysical properties
 - Classifiers to discriminate among vegetation types or species
 - Methods integrating spatiotemporal information to produce higher level metrics
 - Phenometrics related describing pixelwise seasonality
 - Spatial heterogeneity of spectral information (~ spectral variation hypothesis)

• ..

.

. . .

• How to link reflectance & optical traits to ecological information?

→ Identify a relationship between spatial heterogeneity in spectral information and environmental / ecological heterogeneity / biodiversity

• How to link reflectance & optical traits to ecological information?

→ Identify a relationship between spatial heterogeneity in spectral information and environmental / ecological heterogeneity / biodiversity

Asner & Martin (2009), *Frontiers in Ecology and the Environment*, 7:269-276. Asner et al. (2009), *Ecological Applications*, 19:236-253. http://spectranomics.stanford.edu/

• How to link reflectance & optical traits to ecological information?

→ Identify a relationship between spatial heterogeneity in spectral information and environmental / ecological heterogeneity / biodiversity

• Which information should be used to approximate 'optical traits'?

- Transformed reflectance (Féret & Asner, 2014, Laliberté et al., 2020)
- Spectral indices (<u>Schneider et al., 2017</u>)
- Biophysical properties (<u>Hauser et al., 2021</u>)

How to express spectral variations ?

- Univariate / multivariate space
- Discrete / continuous space

• Which ground observations should be compared with spectral information ?

- Species / taxonomic diversity
- Functional diversity

•

. . .

- Which information should be used to approximate 'optical traits' ?
 - Transformed reflectance (<u>Féret & Asner, 2014</u>, <u>Laliberté et al., 2020</u>)
 - No prior assumption on thematic relevance of spectral information
 - Data driven \rightarrow possibly limiting when studying sites independently
 - Manual or automated feature selection (PCs or bands) may be needed
 - Transformation (PCA / MNF) may help reduce influence of sensor noise & artifacts

Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy

 Féret & Asner (2014) Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. *Ecological Applications*, 24 – 1289-1296 <u>https://doi.org/10.1890/13-1824.1</u>
 Laliberté et al. (2020) Partitioning plant spectral diversity into alpha and beta components. *Ecology Letters*, 23(2) – 370-380 https://doi.org/10.1111/ele.13429

- Which information should be used to approximate 'optical traits' ?
 - Transformed reflectance (<u>Féret & Asner, 2014</u>, <u>Laliberté et al., 2020</u>)
 - No prior assumption on thematic relevance of spectral information
 - Data driven \rightarrow possibly limiting when studying sites independently
 - Manual or automated feature selection (PCs or bands) may be needed
 - Transformation (PCA / MNF) may help reduce influence of sensor noise & artifacts

Application on Amazonian forest, Peru:

Continuum removal & SPCA performed on S2 image, three components selected for display

- Which information should be used to approximate 'optical traits' ?
 - Transformed reflectance (Féret & Asner, 2014)
 - Spectral indices (<u>Schneider et al., 2017</u>)
 - Selection of spectral indices based on their correlation with vegetation traits
 - Many SI identified in the literature, possibly strongly correlated
 - Influenced by multiple factors (structure & chemistry), sensitive to sensor noise

Schneider et al. (2017) Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications, 8 – 1441 <u>https://doi.org/10.1038/s41467-017-01530-3</u>

- Which information should be used to approximate 'optical traits' ?
 - Transformed reflectance (Féret & Asner, 2014)
 - Spectral indices (<u>Schneider et al., 2017</u>)
 - Selection of spectral indices based on their correlation with vegetation traits
 - Many SI identified in the literature, possibly strongly correlated
 - Influenced by multiple factors (structure & chemistry), sensitive to sensor noise

Application on Amazonian forest, Peru: Color composite MCARI, mNDVI₇₀₅, NDWI₁

- Which information should be used to approximate 'optical traits' ?
 - Transformed reflectance (Feret & Asner, 2014)
 - Spectral indices (Schneider et al., 2017)
 - Biophysical properties (<u>Hauser et al., 2021</u>)
 - Estimate vegetation biophysical properties based on spectral information
 - Computationally more intensive than spectral indices
 - Easier interpretation by ecologists/agronomists (leaf chemistry, LAI...)

Hauser et al. (2021) Towards scalable estimation of plant functional diversity from Sentinel-2: In-situ validation in a heterogeneous (semi-) natural landscape, *Remote Sensing of Environment*, 265 – 112684 <u>https://doi.org/10.1016/j.rse.2021.112684</u>

- Which information should be used to approximate 'optical traits' ?
 - Transformed reflectance (Feret & Asner, 2014)
 - Spectral indices (Schneider et al., 2017)
 - Biophysical properties (<u>Hauser et al., 2021</u>)
 - Estimate vegetation biophysical properties based on spectral information
 - Computationally more intensive than spectral indices
 - Easier interpretation by ecologists/agronomists (leaf chemistry, LAI...)

Application on Amazonian forest, Peru:

Estimation of LAI (red), CHL (green)& EWT (blue) from S2 image and PROSAIL hybrid inversion

- How to express spectral variations ? Integrating spectral variations over a spatial extent
 - Define a <u>spatial extent</u> matching with ecological hypotheses, ground & RS observations
 - Forest ecosystems: surface of inventory plots ~ 0.25 1 ha
 - Statistics may need min number of pixels constraining surface unit from RS
 - Regular grid, moving window...
 - Explore feature space (spectral index, biophysical properties, principal components...)
 - Univariate space (potentially limiting for complex ecological processes):
 - Standard deviation, spectral range of feature over spatial extent
 - Multivariate space
 - Mean distance from centroid, mean coefficient of variation, entropy
 - Discrete / continuous space
 - Continuous space: trait space / spectral space
 - Discrete space: classification / clustering of trait space / spectral space

- Analyzing continuous feature space to estimate functional metrics from trait distribution
 - Functional richness, evenness, divergence, dissimilarity:
 - → <u>Villéger et al. (2008)</u>, <u>Carmona et al. (2016)</u>

Carmona et al. (2016). Traits Without Borders: integrating functional diversity across scales, TREE

- Analyzing discrete feature space to estimate taxonomic / species inventory metrics
 - Clustering produces 'spectral species', similar to 'optical types' (Ustin & Gamon, 2010)
 - α and β -diversity metrics based on cluster inventory
 - Analogy between species and spectral species is strongly scale dependent

<u>usual metrics for</u> <u>α-diversity :</u>

- Richness
- Shannon index
- Simpson index
- Fischer index

<u>usual metrics for</u> <u>B-diversity :</u>

- Bray Curtis dissimilarity
- Jaccard distance

Based on a 'naive' approach of the problem:

- **1.** Species diversity metrics are computed from plot inventories
- 2. Tree species can be discriminated based on spectral information
 - \rightarrow Use cluster inventories to compute spectral diversity metrics

Based on a 'naive' approach of the problem:

- **1.** Species diversity metrics are computed from plot inventories
- 2. Tree species can be discriminated based on spectral information
 - \rightarrow Use cluster inventories to compute spectral diversity metrics

APPLICATION

Methods in Ecology and Evolution Ecological

biodivMapR: An R package for α - and β -diversity mapping using remotely sensed images

Jean-Baptiste Féret 💿 | Florian de Boissieu 🕩

https://jbferet.github.io/biodivMapR/index.html

- Spectral diversity / optical trait diversity can be useful indicators of biological diversity

 The link between remotely sensed indicators and diversity metrics collected on the ground is not systematic

Mapping biodiversity using vegetation traits estimated from RS

- Temperate forest: Fabas forest (Southwest of France)
- 4m spatial resolution, spectral domain = VSWIR
- Direct validation: 44 field plots inventoried
- Indirect validation: BD Forêt (forest types inventoried between 2007 and 2018)

- Temperate forest: Fabas forest (Southwest of France)
- 4m spatial resolution, spectral domain = VSWIR
- Direct validation: 44 field plots inventoried
- Indirect validation: BD Forêt (forest types inventoried between 2007 and 2018)

α-diversity

- Temperate forest: Fabas forest (Southwest of France)
- 4m spatial resolution, spectral domain = VSWIR
- Direct validation: 44 field plots inventoried
- Indirect validation: BD Forêt (forest types inventoried between 2007 and 2018)

- Temperate forest: Fabas forest (Southwest of France)
- 4m spatial resolution, spectral domain = VSWIR
- Direct validation: 44 field plots inventoried
- Indirect validation: BD Forêt (forest types inventoried between 2007 and 2018)

• Subalpine grasslands : Lautaret pass (France, Hautes Alpes)

- Subalpine grasslands : Lautaret pass (France, Hautes Alpes)
 - Imaging spectroscopy acquired over the study area

•

- Subalpine grasslands : Lautaret pass (France, Hautes Alpes)
 - Computation of three spectral indices related to vegetation traits (Pottier et al., 2014)

- Subalpine grasslands : Lautaret pass (France, Hautes Alpes)
 - Shannon index estimated with *biodivMapR*

 \rightarrow High diversity in the neighborhood of mountain path: artifacts due to mix of rocks and vegetation increasing variability

- Subalpine grasslands : Lautaret pass (France, Hautes Alpes)
 - Bray Curtis dissimilarity + PCoA estimated with *biodivMapR*
 - ightarrow Diversity patterns correspond to main plant communities

- Subalpine grasslands : Lautaret pass (France, Hautes Alpes)
 - Bray Curtis dissimilarity + PCoA estimated with *biodivMapR*
 - \rightarrow Diversity patterns correspond to main plant communities

- FG : open subalpine grasslands dominated by Festuca violacea, mostly found on south-facing steep slopes FP : tall subalpine grasslands dominated by Patzkea paniculata (syn. Festuca paniculata), mostly found on south facing gentle slopes with deep soil
- SC : sparsely vegetated grasslands dominated by Sesleria caerulea on south-facing, debris-covered slopes
- V: low stature heaths dominated by Vaccinium uliginosum and Vaccinium myrtillus, mostly found on north-facing slopes

Comparison between airborne imaging spectroscopy and Sentinel-2 satellite images

Need to perform more quantitative validation :

- On multiple dataset and forest/vegetation types
- With different methods & different diversity metrics

- Comparison between floristic patterns obtained with biodivMapR and a supervised approach
 - Chaves et al. (2020) mapped floristic patterns of Peruvian rainforest
 - Supervised method taking advantage of forest inventory data, Landsat satellite data, climate, soil and elevation data
 - 10 floristic classes defined
 - Spatial resolution of the product : 450 m

Article

Mapping Floristic Patterns of Trees in Peruvian Amazonia Using Remote Sensing and Machine Learning

Pablo Pérez Chaves ^{1,*}^(b), Gabriela Zuquim ^{1,2}^(b), Kalle Ruokolainen ¹, Jasper Van doninck ³^(b), Risto Kalliola ³, Elvira Gómez Rivero ⁴ and Hanna Tuomisto ¹^(b)

Received: 20 March 2020; Accepted: 9 May 2020; Published: 10 May 2020

- Dowload floristic map [Chaves et al. 2020]
- Dowload Sentinel-2 data corresponding to a limited area
- Apply biodivMapR to produce diversity maps

Map of floristic patterns of trees in Peruvian Amazonia

Sentinel-2 tiling grid over Peru Extraction of a study area (yellow box)

• Sentinel-2 image and corresponding floristic map

- Sentinel-2 image and corresponding floristic map
- α and β diversity maps (Shannon index) produced with biodivMapR

Shannon index mapped with biodivMapR

 β –diversity mapped with biodivMapR

- Introduction
- Explore spatial, temporal and spectral dimensions from space
- A quick dive into the spectral space
- Current missions and forthcoming opportunities
- Earth observation and biodiversity : one approach among many
- Conclusions and perspectives

- Increasing amount of Earth observation data from multiple platforms (UAV, plane, satellite)
- Optical sensors acquire information related to various vegetation properties, allowing monitoring vegetation status, function, composition, stress through biophysical properties
- Multispectral sensors (Sentinel-2, Landsat) currently provide abundant information
- New spaceborne sensors (thermal infrared, LiDAR, hyperspectral, radar) open perspectives to assess relevant metrics for vegetation monitoring, biodiversity & ecological applications
- Multiple ways to convert RS information into ecologically meaningful information
 - Identify data type, sensor or sensor combination providing relevant info
 - ightarrow Trade-off between spectral, spatial, temporal information
 - Identify a method and corresponding hypotheses acceptable for situation of interest
 - ightarrow Spectral variation hypothesis, landscape metrics, phenometrics...
- Need to increase collaboration between ecologists & RS scientists

Thank you !

Acknowledgements

TETIS engineering team

Research funded by Association Nationale pour la Recherche (ANR-17-CE32-0001 BIOCOP) CNES / TOSCA grant programs **HYPERTROPIK & HYPERBIO**

©I. Biagiotti@THEIA